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A theory is formulated for the general fatigue response of
brittle flaws which experience residual stress concentrations.
The indentation crack is taken as a model flaw system for the
purpose of setting up the basic fracture mechanics equations,
but the essential results are expected to have a wider range
of applicability in the strength characterization of ceramics.
A starting fatigue differential equation is first set up by
combining an appropriate stress intensity factor for point- or
line-contact flaws with a power-law crack velocity function.
Analytical solutions are then obtained for the case of static
fatigue. The resulting relation between lifetime and failure
stress is shown to have exactly the same power-law form as the
conventional solution for Griffith (residual-stress-free) flaws.
This “equivalence” is used as a basis for extending the results
to dynamic fatigue. A comparison of these analytical solutions
with numerical counterparts defines the limits of accuracy of
the theoretical procedure. However, while the form of the life-
time relation remains invariant, the values of the exponent and
coefficient differ significantly for flaws with and without re-
sidual stress. Accordingly, the application of conventional fa-
tigue theory to evaluate crack velocity parameters, without due
regard for the nature of the critical flaw, can lead to serious
errors. Explicit conversion formulas are given for trans-
forming “apparent” velocity parameters for indentation flaws
directly into “true” parameters. The implications of these
results concerning the use of the indentation method for mate-
rials evaluation are discussed.

I. Introduction

IT IS well recognized that the failure of brittle materials is gov-
erned by the micromechanics of crack growth from small flaws,
and that chemical enhancement of this crack growth can cause
significant reductions in the strength with increasing time under
load. Embodied in the conventional fracture mechanics approach
to “fatigue” phenomena of this kind'? are three underlying as-
sumptions: (a) The time dependence of the loading stresses, taken
to act uniformly across the prospective crack plane, is specifiable;
(b) the driving force on the extending crack is uniquely determined
at any given characteristic length by these applied loading stresses;
(c) the rate of crack extension is in turn uniquely determined by
some well-defined function of the driving force for any given
material/environment system. These assumptions allow one to
write down a differential equation in crack length and time, the
solution of which defines the stress conditions at failure. The
widespread success enjoyed by the fracture mechanics formulation
arises from the amenability to solutions in simple, closed form,
which provide a convenient basis for lifetime predictions.

Apart from the clear-cut distinction made between loading at
constant stress (“static fatigue™) and constant stress rate (““dynamic
fatigue”), surprisingly little attention has been devoted to the ef-
fects that potential variations in the starting equations may have in
the lifetime analysis. Wiederhorn and Ritter® examined the crack
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velocity function, and concluded that any of the commonly ac-
cepted empirical forms may fit fatigue data equally well (although
extrapolations beyond the data range could lead to significant dis-
crepancies in the predictions). Of the assumptions listed above, the
second has been subjected to least scrutiny, it generally being
assumed, without question, that the flaws respond in the classical
“Griffith” sense; that is, the flaw is driven solely by the applied
loading, this force increasing monotonically with the crack size
until some instability condition is met.** It is thus implicit in the
statement of the problem that any preexisting stresses which may
have been responsible for generating the critical flaw in the first
place®® have long since ceased to be a significant contributing
factor in the net driving force on the system.

However, recent studies of controlled flaws produced by inden-
tation in strength test pieces have demonstrated that residual crack-
generation stresses can have a profound influence on the crack
evolution to failure.” The source of the residual field in this case
is elastic-plastic mismatch at the boundary of the deformation zone
which encases the sharp point and edges of the contacting body."
It then becomes necessary to incorporate a residual-contact term
into the fracture mechanics equation for the crack driving force.
Charactenstncally, this contribution decreases monotonically with
crack size.® The resulting expression for the net force on the crack
now takes on a considerably more complicated form. This com-
plexity is such that the appropriate fatigue differential equation no
longer appears to have simple analytic solutions. Accordingly, the
first systematic investigations of residual-stress effects in fatigue.
using results from dynamic® and static'® loading tests on Vickers-
indented soda-lime glass in water as a data base, were made by
obtaining numerical solutions specific to one pamcular
indenter/material/environment system. A subsequent analysis,''
based on a reformulation of the differential equation in terms of
judiciously normalized variables, allowed for generalization of the
numerical procedure to include solutions for all possible systems.
Most notably, this last study produced an empirical dynamic fa-
tigue relation, for flaws satisfying a power-law crack velocity
function, which was indistinguishable in form from that derived
analytically for Griffith flaws. The exponents and coefficients in
this relation were not, however, identical in the two cases; in
particular, the values of the fatigue exponent, which for Griffith
flaws is a direct measure of the corresponding exponent in the
crack velocity function, differed by some 30%. A case study on a
glass-ceramic'? confirmed these and other features of the residual-
stress theory, and outlined several unique advantages of the inden-
tation method as a means for evaluating basic fatigue parameters.

One point that must be made at the outset is that indentation
cracks should not be regarded simply as artificially introduced
entities which bear no resemblance to strength-controlling flaws in
real materials. There is growing evidence that the degrading sur-
face damage which many ceramic ‘components experience m ﬁn-
ishing (e.g. machining)'® or in service (sharp particle impact)**
characterized by the same residual stress effects as are mdentatlon
flaws. Indeed, the observation of strongly analogous local stress
field effects about microstructural flaws in ceramics'® suggests that
the presence of residual crack driving forces may be the rule rather
than the exception.

Viewed against this background the solution of the indentation
fatigue problem takes on a broader significance. Accordingly, the
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Fig. 1. Indentation flaw: crack of size ¢ is formed at
contact load P, and subsequently subjected to applied
tensile stress o,. Deformation zone about contact gives
rise to residual stress field which contributes to crack
driving force.

v-12

numerical basc of the earlier analyses must be seen as re-
strictive. Ideally, one would like to be able to obtain analytical
solutions of the master differential equation in its most general
possible form. Such solutions would provide a sounder basis for
making intercomparisons between (a) flaws of different geometry,
e.g. "point” flaws produced in normal loading vs “line™ flaws
produced in sliding loading; (b) different crack velocity functions;
(c) static vs dynamic fatigue. In this paper we present an analysis
which meets this ideal at least in part, the greatest restrictions being
the need to retain a power-law crack velocity function and to obtain
the dynamic fatigue solutions by an “equivalence” argument. The
ensuing fatigue relation between lifctime and failure stress con-
firms the findings of the previous empirical studies, but now
provides more explicit expressions for obtaining crack velocity
parameters from fatigue plot slopes and intercepts.

II. Analytical Solution of Fatigue Differential Equation for
Constant Applied Stress

(1) The Stress Intensity Factor and the Inert Strength

The key step in generalizing the Griffith-flaw concept to include
residual-stress effects is an appropriate expression for the crack
driving force. The essential variables expected to appear in any
such expression are depicted in Fig. 1: ¢ is the characteristic crack
size, P, the indcntation load which determines the level of the
residual field, and o, the subsequently applied tensile stress which
takes the system to failure. In this work we shall make a special
distinction between the geometrical extremes of “point” and “line”
flaws; the former defines a crack configuration of semicircular
profile centered about a point-force contact (P,=force), the latter
a crack of straight front parallel to a line-force contact (P,=force/
length). We shall also assume that the cracks are “well developed,”
i.e. are large compared to the deformation zone from which these
cracks initiate. Following our previous procedure,'' the requisite
crack driving force may be formulated in terms of the composite
stress intensity factor

K=K,+K, (1a)
where the terms

K,=x.P./c"* (1b)

K.=¢.0,c" (Io)

respectively represent the contributions from the residual contact
field and the applied loading: here r=3 for point flaws and r=1 for
line flaws; y, and ¢, are dimensionless parameters of the inden-
tation stress field and the crack geometry, respectively. This for-
mulation is subject to some modification due to the influence of
such factors as secondary crack systems, spurious surface stress
states, etc.; detailed discussion of these factors is available else-
where,'" and will consequently be pursued no further here.
Equation (1) has certain features which are pertinent to the
fatigue analysis to follow. These features are evident in the plots
of the function K(¢) in Fig. 2 for both point and line flaws. The
curves for fixed values of P, and o, pass through a well-defined
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Fig. 2. Stress intensity factor as function of crack size
(Eq. (1)) for point (r=3) and line (r=1) flaws. Inclined
broken lines represent individual residual and applicd
components (Eqs. (1) and (1¢)): solid curves represent
composite functions.

minimum, tending asymptotically on either side of this minimum
to plots of the residual component of the stress intensity factor in
the small-crack limit and of thc applied component in the large-
crack limit. The coordinate variables are normalized to the refer-
ence points M, which are of special significance in cstablishing
baseline levels for the fatigue strength characterization'': in addi-
tion, this mode of plotting foreshadows the normalization scheme
to be adopted in a later section of the paper. For arbitrary valucs
of applied stress the condition dK/dc=0 defines the minimum in
Eq. (1), which we designate by asterisk notation:

Kx=(r+ OYx.P./cE=[(r+ 1)/ rl0.cy? (2a)
cx=(rx,P./ Y0)*""" (2b)

The curves with their minimum at M correspond to the special case
K«=K,; at this point we may appropriately identify the critical
variables 0,=0, Cx=Cm, i.€.

an=[r/(r+ ) VTIKE (AP (3a)
cn=[r+ DX P./K " (3b)
It may be shown from Eqgs. (2) and (3) that
Ke/K.=(0./a.)"""" (4a)
cx/Cn=(Om/0)*""" (4b)

so that as ¢, drops below ¢, the position of the minimum in Fig. 2
displaces downward and to the right relative to M.

The points at which the curves in Fig. 2 intersect the horizontal
line K=K, correspond to equilibrium crack configurations. stablc
or unstable according to whether the branches have negative or
positive slope. The stable equilibria define appropriate initial con-
ditions for ensuing fatigue fracture; ¢, for loading at constant stress
rate, ¢, at constant stress. In practice, fatigue effects will be mani-
fest in the postindentation crack configuration before application of
tensile loading, causing subcritical extension from ¢, to some non-
equilibrium size ¢, (which may or may not exceed ¢,). The unstable
equilibria at ¢, define the final configuration immediately prior to
the onset of catastrophic failure. It is useful at this stage to point
out that an instability configuration can be achieved without cver
departing from an equilibrium state, by steadily increasing the
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Fig. 3. Normalized lplots of lifetime vs failure stress for point

and line flaws; static fatigue results. Data points and solid lines

represent numerical and analytical solutions of master fatigue

gifferential equation, respectively. Note inert strength cutoff at
=1=S,.

applied stress ., from zero to o.,., thereby causing the crack to
grow stably from co to c..; this takes us along K=K to point M in
Fig. 2, where ¢, merges with ¢, to produce spontaneous failure.
Since such conditions are most closely met in nonreactive test
environments we may define an “inert” strength o,=0.,, which
from Eq. (3) can be written in the form

o=[r/(r+ DIK./P.co? 5)

independent of initial crack size.

For comparison, the corresponding inert strength o7’ for Griffith
flaws follows from Eq. (1) in the limit of y,=0, with spontaneous
failure occurring, without any precursor crack growth, at ¢;, say:

m'():K(‘/l/eri”z (6)

In this case the strength is, of course, sensitive to the initial flaw
size; the appropriate value of ¢;, i.e. ¢o, co, OF ¢, (or indeed any
other such crack dimension), will depend on the nature of the
mechanical, thermal, and/or chemical (or other) processes re-
sponsible for removing the residual contact field between crack
formation and strength testing.

(2) Formulation and Solution of the Fatigue Equation

The fracture mechanics approach to the fatigue problem begins
with the assumption that a crack velocity function may be written,
for a given material/environment system, in the form v=w(K). In
combination with the stress intensity factor, K=K(r, P,, o,, ¢), in
Eq. (1) and the specified time variation of the applied tensile field,
o.=0,(t), the velocity function assumes the form of a differential
equation, dc/dt=Wr, P,, a.(t), c]. This equation must be solved for
the time-to-failure, ¢, needed to take the crack from c; to ¢, at
which point the stress level defines the fatigue strength, o.=oy.
The primary objective of any such analysis is to determine the
relation between oy and # (or some equivalent parameter, such as
stress rate ¢, in dynamic fatigue).

To proceed with the solution of the differential equation it is
necessary, of course, to know the form of the crack velocity func-
tion. In this paper we adopt the simple power-law relation

v=vo(K/K.)" )
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Fig. 4. Normalized plots of lifetime vs failure stress for point
and line flaws; dynamic fatigue results. Data points and solid
lines represent numerical and analytical solutions, respectively.

where v, and n are empirical quantities. At the moment, this is the
only one of the commonly used crack velocity functions for which
we have been able to obtain analytical solutions for flaws with
residual stress. Thus we obtain

dc/dr=(vo/KIXK[r, P., 0u(). c]Y" ®)

as our master starting equation.

(A) Griffith Flaws; Static and Dynamic Fatigue Solutions:
The standard solutions of Eq. (8) for Griffith flaws are
well known.'~ It is nevertheless instructive to include them here
as a base for comparing later solutions. Inserting x,=0 into

Eq. (1) yields
dc/dt=(vo/KDK}
=(o/KD[Wh.0.0c"*T &)

The problem accordingly reduces to one of straightforward inte-
gration by separation of variables. For static fatigue, i.e.
o.=constant=0;, Eq. (9) becomes simply

i <
f dr=[K"/ve(W,a)"]| dc/c™? 10
The in(;egrated result may be written in the form
4o7=A, an

where, in the usual approximation (c;/c)"~*"* <1, and in conjunc-
tion with Eq. (6), we obtain

A=2K7/(n=2)voffc/"™ zuz‘
=[2/(n=2)]o7c:/vo (12)

The appearance of ¢; as the controlling crack size in Eq. (12)
reflects the fact that the crack system spends the greater propor-
tion of its time evolution to failure in the region of minimum
driving force.

The corresponding solution for dynamic fatigue,'™ i.e. for
o,=0,t with constant &,, can be expressed by the same power law
as Eq. (11), but with A, replaced by A,, where

Aa=(n+1)A, (13)

3
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(B) Flaws with Residual Stress; Static Fatigue Solution:  For
the general case where x,#0 in Eq. (1), Eq. (8) becomes

dt'/dfz (V()/K:)[K,+Ku]"
=/ KDXP./c*+ Y0, ()c'?T (14)

Integration by separation of variables is no longer straightforward
as it was for Griffith flaws. Even in static fatigue, for which the
right side of Eq. (14) contains no explicit terms in time, it is not
immediately clear how the failure stress might be extracted from
the integral and thereby related to lifetime. It was difficulties of this
kind which motivated the numerical approach described in
Ref. 11.

However, it can now be demonstrated that Eq. (14) does have an
analytical solution at o,=constant=g;. Since the integrated life-
time is controlled at one extreme by K, for small cracks (c<cx) and
at the other extreme by K, for large cracks (c>cx), it is appropriate
to introduce a variable that defines the relative stress intensity
factor at either extreme. We accordingly choose

&=K./(K,+K.)
=1/[1+(xP./b.0p)/c" 7] (15)

where & defines the fraction of the total stress intensity factor wilich
is associated with thc applied field, this fraction increasing mono-
tonically with crack size. A second, important motivation for
introducing this reduced variable is to convert the lifetime integral
to a dimensionless form so as to display the applied stress and
indentation load dependence separately. After considerable
manipulation, Eq. (14) becomes

y
f dr={[2K?/(r+ )vo)/[(Y.a) 2" "(x,.P,)" """ V]}
o
&
X §(rn+2)/(r+l)—l(l_g)(n—l)/(r+l)—ld§ (16)
i
and we note that o; does indeed appear outside the integral. At this

stage a significant simplification in the expression can be made by
introducing the quantity

n'=(rn+2)/(r+1) a7

This will be seen later, with the benefit of hindsight, to be a
particularly convenient choice of substitution. A further sim-
plification is to assign the following values to the limits of integra-
tion in Eq. (16), consistent with our identification of the initial and
final conditions in Fig. 2 and Eq. (15),

&=y,01c!?/K—0 (18a)
&=hoq?[K—1 (18b)

in which case the integral in Eq. (16) reduces to the beta function.*
These value assignments are tantamount to saying that the initial
conditions are governed by the residual component of the stress
intensity factor, the final conditions likewise by the applied compo-
nent. In any case, the final result is not expected to be sensitive to
the limits of integration, bearing in mind that the region of mini-
mum driving force in Fig. 2, which must control the fracture
kinetics, lies intermediate to the initial and final configurations.
This assumption is verified in the Appendix. With these sim-
plifications Eq. (16) reduces to

t=[2K2/(r+ Dvo(¢,0)" (x.P.)" " 1B(n',n—n") (19)
with the beta function

B(n',n—n")= J' £ 1=H N ag (20)
o

Thus the requisite relation between lifetime and failure stress has
the familiar form

yor =Al @1

*See any standard text on advanced mathematical methods.
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where we obtain, in conjunction with Egs. (3) and (5),
A =[2K2/(r+ Dyvolr} (x,P.Y" " 1B(n', n—n")
={2r+1)"""/r"1B(n’, n—n" )07 Co/ Vo
=[87/(r+1)n'1"a/ ./ vo (22)

the last cxpression arising from an asymptotic expansion of the beta
function for large n' (Appendix).

While the form of Eq. (21) is indistinguishable from that of
Eq. (11) for Griffith flaws, the exponent and coefficient are sig-
nificantly modified. The implications of these modifications are
discussed in Section IV.

III. Comparison of Analytical and Numerical Solutions:
Extension to Constant Stress-Rate Loading

It is instructive to examine the mutual consistency of the results
obtained analytically in Section II and numerically in Ref. 11. To
do this, and to broaden the scope of the treatment to date, numeri-
cal solutions, previously confined to the special case g,=constant
and r=3,"" are here generated for each combination of fatigue
(static or dynamic) and flaw (point or line) types.

Following Ref. 11, reduced variables are introduced as follows:

Sa= (T,,/Um (23(1)
C=c/cn (23b)
T=tvo/Cm (23¢)

Reference to Eq. (5) then allows the differential equation for flaws
with residual stress, Eq. (14), to be expressed in a more universal
form,

dC/dT={1/(r+ 1)C"*+[r/(r+1)}SAT)C"*}" (24)

which is especially amenable to numerical analysis. This equation
is solved by a stepwise integration procedure for the (reduced)
time-to-failure 7} to take the crack from C; (approximated by the
value Co=1/(r+1)*" at §,=0) to C;."' The corresponding failure
stress S, at the critical end point of the integration is seen to bc
uniquely determined by the values of r and n and the form of the
stressing function S,(T). It is noted that the normalization scheme
conveniently relates all variables to the inert strength state, i.c.
S;=S»=1 and C,,=1, as represented by the reference point M in
Fig. 2.

To facilitate the required comparisons, let us translate the essen-
tial results of the analytical treatment in Section II into reduced
variable notation. Taking static fatigue first, i.e. S,=constant=S§,,
Eq. (21) retains its basic form,

TS =A. (25)
with the coefficient relating to its counterpart in Eq. (22) as
AJ=A!vo/ o7 Cm
=[2(r+1)""'/r"1B(n, n—n")
=[8n/(r+1)]"*/n"" (26)

where the last line in this equation is an asymptotic approximation
in n’ (Appendix).

At this point, it is pertinent to recall the essential equivalence of
the static fatigue solutions for flaws with and without residual
stress, Egs. (21) and (11). It would appear reasonable to expect this
equivalence to extend to dynamic fatigue, S,=S.T (S, constant).
Accordingly, since in the case of Griffith flaws the static and
dynamic solutions can be shown analytically to have exponents
which are identical and coefficients which relate linearly via
Eq. (13), we may proceed by analogy and modify Eq. (25), thus

TS =A; 27
where we have from Eq. (26)
As=Avo/al cn=(n"+ DA =[87/(r+1)]"n"'"? (28)

with the same asymptotic approximation as made in Eq. (26).
Figures 3 and 4 show the results of both analytical and numerical
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Fig. 5. Plots showing variation of exponent n’ (n, and n; cannot be
distinguished in these plots) and coefficients A, and A} with n. for point
and line flaws. Data points and solid lines represent numerical and analyti-
cal evaluations, respectively.

calculations on logarithmic plots of lifetime vs failure stress for
static and dynamic fatigue, respectively, and for point and line
flaws. The data points in thesc plots are numerical evaluations of
Eq. (24) at either fixed S,, (Fig. 3) or S, (Fig. 4) for selected values
of n. The corresponding solid lines are analytical representations
of Egs. (25) and (27), in conjunction with Eq. (17). The degree of
correlation between data points and solid curves reflects the accu-
racy of the theory developed in Section II. In this context the
tendency for systematic departures to increase at low n (or n')
values may be taken as a measure of the range of validity of the
asymptotic beta function expansion used in the evaluation of the
integral in Eq. (16). Special note may be made of the fact that the
correlations appear to be as strong for the dynamic fatigue results
in Fig. 4 as for the static fatigue in Fig. 3, thereby providing some
justification for the equivalence argument adopted to extend the
theoretical analysis earlier in this section.

A more detailed comparison of results is obtaincd by considering
the specific variations of the exponent n' and coefficients A’ in
Eqgs. (25) and (27) with n. This is done in Fig. 5 for point and line
flaws. The data points again represent numerical evaluations of
Eq. (24). obtained from slope and intercept cvaluations in the
“linear” region of the lifetime vs failure stress plots; the solid
curves likewise represent analytical cvaluations from Egs. (17),
(26), and (28). The disagreement between the two approaches
is <1% for the exponent and <10% for the coefficients in the
domain n>10.

IV. Discussion

The formulation presented in this paper demonstrates that analy-
tical solutions can be obtained to the fracture mechanics fatigue
equations for flaws which are subject to residual-contact driving
forces and which extend according to a power-law crack velocity
function. A major feature of these solutions is the fact that they are
identical in basic form to those obtained for Griffith flaws in
conventiona! fatigue analysis. Thus, from a standard linear plot of
lifetime vs failure stress in logarithmic coordinates it would not be
possible to determine, without independent information on the
crack velocity parameters, whether the flaws in a given material/
environment system are or are not influenced by residual stresses.
This conclusion should provide some comfort to those who have
advocated the exclusive use of strength data for predicting compo-
nent lifetimes, since the nature of the flaw now does not enter into
consideration (unless perhaps the predictions require extrapolation
beyond the data range'®). Of particular importance in this context
is the widely proposed use ot dynamic fatigue testing as the source
of base data for design requirements; in terms of a lifetime vs
failure stress diagram the curve for static loading generates from
that for dynamic loading via a simple connecting relation for the
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intercepts. To illustrate, Fig. 6 shows data from both dynamic” and
static'” fatigue test runs on indented soda-lime glass in water. A
least-squarcs fit through the dynamic fatigue data gives n’, Eq.
(27); subscquent translation downward through log(n'+1), Eq.
(28). generates the static fatigue curve. The agreement between
prediction and obscrvation in the latter case, notwithstanding the
cxperimental scatter. may be taken as a justification for the
“equivalence” argument used to infer the existence of Eqgs. (27) and
(28) from their Griffith counterparts, Eqs. (11) and (13).

There is. however, considerable danger in analyzing fatigue
results from materials whose flaw characteristics are not known.
This is particularly so if one attempts to relate the strenigth data to
the parameters in the crack velocity function. The point is most
readily demonstrated by considering the exponent in this function
in terms of the slope of lifetime vs failure stress plot. From Eq. (11)
for Griffith flaws the slope gives n (more strictly, its negative)
directly, whereas from Eq. (21) for flaws with residual stress the
corresponding slope is n'; in the latter case evaluation of the true
exponent requires inversion of Eq. (17):

n=4n'/3-2/3 (r=3) 29a)
n=2n'-2 (r=1) (29b)

Thus substantial errors may be incurred if the conventional theory
of fatigue is used to analyze data for contact-induced flaws which
have undergone no subsequent stress relaxation. For example, in
Fig. 6 the apparent exponent is determined at n'=13.7%0.2,
whence Eq. (29a) appropriate to point (Vickers-induced) flaws
predicts n=17.6%0.3; this latter value is close to the true exponent
n=17.9%0.5 obtained from comparative tests on indented speci-
mens subjected to an anncal treatment prior to strength testing,”
and lies in the range of 16<<n <19 gencrally found for large-scale
cracks in the system soda-lime-glass/water.'® The discrepancy be-
tween apparent and true exponents is predicted to be even greater
for linear flaws, almost a factor of 2, Eq. (29b). It is interesting to
note that discrepancies of this order were found by Pletka
and Wiederhomn'’ in certain ceramics where machining damage
provided the strength-controlling flaws.

Similar care must be exercised in evaluating the coefficient of
the crack velocity function from the intercept on a fatigue plot. For
flaws with residual stress, inversion of Eqs. (26) and (28) gives

vo=A' o7 Cuf X’ (30)
where

AN =Qn/n")"? (o,=constant, r=3) (3la)

A =(4m/n")"? (o,=constant, r=1) (31b)

A'=Qmn")"*  (6.=constant, r=3) (31¢0)

A =(4mn’)'"? (o,=constant, r=1) 3ld)

Inversion of the corresponding intercept relations for Griffith
flaws, Eqgs. (12) and (13), leads to an analogous result, but with
a different A" term and with ¢; replacing ¢, as the controlling
crack parameter.

We should emphasize here that Eq. (31) represents only a first-
order approximation; additional terms in a series expansion may be
required where accuracy requirements are stringent (Appendix).
However, since lifetimes are generally plotted in logarithmic coor-
dinates the present approximation will usually suffice, except per-
haps at n=<10.

This sensitivity of the slope and intercept terms in the fatigue
relations to the nature of the strength-controlling flaw provides a
strong case for the use of indentation testing in the evaluation of
crack velocity parameters. Any uncertainty as to whether the
cracks are subject to residual stress effects and whether the cracks
have essential point or line (or intermediate) geometry is then
eliminated. Of course, such elements of uncertainty can hardly be
avoided in ceramic components which are to be placed in service,
so any attempt to apply the above procedure in reverse, i.c. to use
macroscopically determined crack velocity parameters to predict
lifetime characteristics, needs to be treated with extreme caution.
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Indeed, the present results would appear to strengthen the case for
fatigue testing on the actual surface finish to be used in service.

Thus far in the discussion we have eftectively becn considering
the fatigue response of a given material/environment system at
fixed indentation loading conditions. How might the formalism
developed here be rearranged to accommodate a test program
which calls for the removal of these restrictions? Ideally, it would
be convenient to be able to devise a scheme whereby all data for
a given system could be plotted onto a universal curve, regardless
of load, such that comparative evaluations could be readily made
for different materials. Alternatively, one could use load as a
control variable for investigating the effect of flaw size on the
validity of crack growth laws.'® Accordingly, inserting Eq. (30)
into the general fatigue relation 07 =\’ gives'

/N ca=(1/vo)(ai/a)" (32)

The load P, may now be introduced explicitly into the analysis via
Eq. (3) by writing

0=0.,={/P" (33a)
Cn=1P" (33bh)

where {={(r, x., ¥, K.) and n=n(r, .. K.) are experimentally
measurable inert-strength constants.'? Then Eq. (32) becomes

/P =(A'{" n/vo) [ (aP')" (34)

lir

so plots of t;/P?" vs ayP'" in logarithmic coordinates shculd pro-
duce universal straight lines for individual material/indenter sys-
tems. These plots are, of course, nothing more than generalized
versions of those illustrated in Fig. 6. The advantage of this
scheme is that it provides the basis for constructing “master
diagrams” in which the relative fracture properties of different
materials are immediately apparent. Thus the slope of any such plot
in the fatigue region gives a direct measure of the “susceptibility”
to delayed failure, in the manner already discussed in relation to
Fig. 6; the inert-strength cutoff likewise gives a measure of the
intrinsic “toughness,” as reflected by the parameter { in Eq. (33a).
Clearly, the materials with superior strength characteristics will
be those which, for a specified lifetime domain, lic to the right of
the diagram. Further details of this proposed scheme will be ex-
plored elsewhere. "’

There are in the analysis several implicit assumptions which
have not been given close attention in the body of the text. These
include: (a) that the solutions of the fatigue differential equations
are insensitive to initial conditions, () that the multiple-region
effects in the crack velocity function are negligible, (c) that the test
material is free of preexisting surface stresses. Reference 11 con-
tains a detailed discussion of these points.

Finally, although our attention has focused on indentation
cracks, the basic stress intensity formulation of Eq. (1) might be
expected to cover a far broader range of flaw types. Similarities in
the local residual stress fields about microstructural defects in
ceramics (due to strain incompatibilities at grain or inclusion
boundaries) and indentations have already been noted by Green.'*
Extension to these other cases is accordingly a simple matter of
reinterpreting the physical meaning of the quantity x,P, in Eq. (15)
in terms of characteristic pressure and radius parameters which
define the intensity and extent of the field.* Then, provided of
course that the reactive chemical species has access to the defect
centers to cause fatigue in the first place, the conventional analysis
of lifetime properties is subject to precisely the same modifications
as described for contact flaws in Sections Il and IlI.

‘It may be noted in passing that if we were to define a dimensionless velocity
v=A’c,/1, and stress intensity factor K=0;/0,. Eq. (32) could be inverted to give
v=v,K". fn this interpretation the plotting scheme to be proposed may be regarded as
representative of an inverse crack velocity function.
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Fig. 6. Plot comparing static and dynamic fatigue re-
sponse for soda-lime glass in water using indentation flaws.
Data from Refs. 9 and 10. standard deviation error bars.

APPENDIX

Lifetime Integral and its Approximations

In this appendix the assumptions made in the derivation of the
lifetime formulation for cracks in combined residual and applied
stress fields are examined. Specific attention is directed to the
dimensionless quantity in Eq. (26),

&
.’\_{=[2(r+l)""/r"']f gn’-l(l_g)u—n'-ldf (A—l)
&

where the integral is the generalized version of Eq. (20) (i.e. with
variable limits of integration). Consideration of this one expression
is sufficient to cover all the approximations referred to in Sec-
tions 1I(2B) and I1I. The treatment here is taken in two parts: in the
first, A, is expressed in terms of the beta function and two incom-
plete beta functions, and these functions are evaluated to determine
their relative importance; in the second part, the beta function.
which is confirmed to be the dominant term in A, is expanded in
an asymptotic series for large values of n.

An important point to keep in mind here is that accuracy in A..
although clearly desirable, is not nearly as critical as it is in the
exponent n’ in Eq. (25), for which we have an exact expression
(Eq. (17)). Generally, accuracy to within a factor of two in A/ is
adequate for most lifetime and crack velocity evaluations.

(1) Beta Function Expression
The integral in Eq. (A—1) may be rewritten as follows:

& !
f §n' |(l—§)" n- 'd§=f gn' I(I_g)n -n’ -Idg
& 0
& )
- j §n' l(l _g)n n Id§

1
_f fn’ I(l__f)" n Id_f (A_z)
&

The first integral is the beta function B(n’,n—n’) as previously
defined in Eq. (20). The second and third integrals are the incom-
plete beta functions® B, (n'.n—n’) and B ¢, (n—n'.n’) (us-
ing a transformation of variables £—1—¢ in the latter case).
Equation (A-1) then becomes

A =[2r+ 1) "] [B(n', n—n’)
=B (n',n—n")=B_g(n—n'.n")] (A-3)
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Table IA. Initial and Final Values of Reduced
Stress Intensity Factor, £=K,/K, for Selected Values
of Reduced Applied Stress, S,=0./0.,
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Table IIIA. Comparison of A; Evaluations from Equation
(A-9) Using Lead Term and Full Beta Function Expression

Flaw type n n' [87/(r+1n’)'?  A! (beta)
Flaw type Sa & & Point (r=3) 10 8 0.886 1.110
Point (r=3) 0.9 0.559 0.891 18 14 0.670 0.755
0.7 0.390 0.959 38 29 0.465 0.492
0.5 0.261 0.986 78 59 0.326 0.335
0.3 0.150 0.997 158 19 0.230 0.233
0.1 0.048 1.000 Line (r=1) 10 6 1.447 2.032
Line (r=1) 0.9 0.342 0.658 18 10 1.121 1.348
0.7 0.226 0.774 38 20 0.793 0.864
0.5 0.146 0.854 78 40 0.560 0.584
0.3 0.082 0.918 158 80 0.396 0.405
0.1 0.026 0.974

Table IIA. Comparison of A, Evaluations
from Equation (A-3) Using Beta Function Contribution
Only and Full Expression
Flaw type n n' A, (beta)
Point (r=3) 10 8 1.110

©

u A

0.780
1.051
1.110
0.659
0.751
0.755
0.482
0.492

1.181
1.768
2.032
1.045
1.315
1.348
0.813
0.864

18 14 0.755

38 29 0.492

Line (r=1) 10 6 2.032

18 10 1.348

38 20 0.864
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The beta function in Eq. (A-3) is readily computed from the
more familiar gamma function to which it is related”; generally,

B(n',n—n")=I'(n"\['(n—n")/T(n) (A-4a)
or, more simply, when both n and n’ are integers,
, B(n',n—n")=(n'—D)Yn—n"—1)!/(n—1)! (A-4b)

Computation of the incomplete beta functions, however, re-
quires prior specification of the reduced quantities & and &. In the
same way as the limiting values of these two quantities in Eq. (18)
are derived from the defining relation Eq. (15), we may write,

&=[r/(r+1)}s.C' (A-5)

where we have invoked the normalizing scheme of Eq. (23). For
present purposes we can adequately illustrate the approximations
involved by considering the relatively simple case of static fatigue,
i.e. S,=constant; values of ¢ and & appropriate to initial and final
crack sizes are then obtained from the roots of Eq.(1) at K=K,
(again expressed in normalized form). Table IA shows values for
several reduced applied stresses for both point and line flaws.
These values can clearly differ substantially from the limits of
&=0and &=1 of Eq. (18), particularly at stress levels approaching
the inert strength S,=1.

In our study the incomplete beta functions have been evaluated
using an adaptive Simpson’s rule computer code for the integration
limits of Table 1A, although algorithms are available for analytical
(but tedious) computation.

Table IIA summarizes the results of the calculations, for selected
values of n and for point and line flaws. The tabulation compares
evaluations of A; made with the incomplete beta functions omitted

and included. It is clear that the terms containing these incomplete
beta functions make a significant contribution only at low n and
high S.. Even in these worst cases the discrepancy is generally
likely to be less than the factor of two tolerance level quoted
earlier. Thus in the region of larger n (which appears to pertain to
most practical ceramics) and long lifetimes, A, effectively be-
comes an invariant quantity, independent of applied stress.

(2) Asymptotic Expansion of Beta (Gamma) Function
In the spirit of the approximations above in which only the beta
function is retained in Eq. (A-3) we have

A =020+ 1y /r 0" )T (n—n")/T(n) (A-6)

The gamma functions in this expression may now be expanded
using Stirling’s formula®; e.g. for the first gamma function

In T'(n')~ In Q#w/n")*+n' In n’'—n'+S(n’) (A-T7)

where S(n’) is the series
S(n’)='2:_I [Bax/2k (2k—1))/n"*"" (A-8)

with B, the Bernoulli numbers (B,=VY6, Bs=—V50, etc.).® After
some manipulation, Eq. (A-6) reduces to

In A!~In [87/(r+1)n']"?
+n' In [n'/(n’=2)]—(n—"2) In [n/(n—2)]
+S(n")—S(n)+S(n—n") (A-9)

In this expression the second and third terms tend to cancel and the
series S terms become small as n increases, leaving the lead term
as the dominant quantity. The accuracy with which this lead term
can be used to represent A; may be gauged from Table IIIA.
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